Wednesday, 28 June 2017

What are monoclonal antibodies? |




Cancers treated: Lymphoma, leukemia, breast cancer, head and neck cancers, colorectal cancer, lung cancer





Subclasses of this group: Murine (composed entirely of mouse sequences), chimeric (composed of approximately one-third mouse and two-thirds human sequences), humanized (composed of at least 90 percent human sequences), and human (antibodies that are fully human in composition)



Delivery routes: As a result of their molecular size and susceptibility to enzymatic digestion in the gut if administered orally, monoclonal antibodies must usually be administered by intravenous (IV) infusion.



How these drugs work:
Antibodies are proteins that bind to a specific site, or epitope, on a specific target molecule. In response to infection or immunization with a foreign agent, the immune system generates many different antibodies that bind to the foreign molecules. This pool of polyclonal antibodies contains a mixture of different antibody molecules, each of which binds to a specific epitope. Isolation of a single antibody from a polyclonal antibody pool would yield a highly specific molecular tool with the ability to bind to a single epitope. Georges Köhler, César Milstein, and Niels Kaj Jerne invented the process of producing monoclonal antibodies in 1975 and shared the 1984 Nobel Prize in Physiology or Medicine for their discovery. Since then, monoclonal antibodies have become an important tool in biological research and in medicine.


The process of producing monoclonal antibodies involves fusing an individual B cell, which produces a single antibody with a single specificity but which has a finite life span, with a long-lived myeloma tumor cell. The B cell is taken from the spleen or lymph nodes of an animal that has been challenged with the antigen of interest. The combination of the B cell and the myeloma cell produces a hybridoma cell, a kind of perpetual antibody-producing factory. The hybridoma cell produces the single specific antibody and can be grown in culture indefinitely, allowing the production of large amounts of the monoclonal antibodies. Monoclonal antibodies are potentially more effective than conventional drugs in treating cancer, since conventional drugs attack not only cancer cells but also normal cells. Monoclonal antibodies attach only to the specific target molecule. Since monoclonal antibodies are specific for a particular antigen, one designed to bind to ovarian cancer cells, for instance, will not bind to colorectal cancer cells.


The first monoclonal antibodies were made from mouse B cells. When administered into humans, mouse antibodies are recognized by the human immune system as foreign (because they are from a different species) and can elicit an immune response against them, causing allergic-type reactions. Researchers have since learned how to replace some portions of the mouse antibody sequences with human antibody sequences. The application of genetic engineering techniques has allowed the production of chimeric, humanized, and, more recently, fully human monoclonal antibodies.


An antibody molecule is composed of two heavy polypeptide chains and two light polypeptide chains. Both heavy and light chains are composed of a region that varies from antibody to antibody, the variable region, and a constant region that is conserved. By combining human sequences for the constant region with murine sequences for portions of the variable region, the amount of murine sequence can be decreased. Depending on how much murine sequence is left, the result is either a chimeric (with approximately one-third murine and two-thirds human sequence) or a humanized (with at least 90 percent human sequence) monoclonal antibody. Genetically engineered mouse strains are now available that contain a large portion of human deoxyribonucleic acid (DNA) that codes for the antibody heavy and light chains, with the mouse’s own heavy and light chain genes inactivated. Using these mice to produce B cells for the construction of hybridomas allows the generation of fully human antibodies, which are likely to be safer and may be more effective than the previous generation of monoclonal antibodies.



One potential treatment for cancer involves using monoclonal antibodies that bind only to a cancer cell-specific component of interest and induce an immunological response against the target cancer cell (referred to as “naked” monoclonal antibodies). Monoclonal antibodies can also be designed for the delivery of another (nonspecific) agent, such as a toxin, radioisotope, or cytokine, to the cancer cell for the purpose of killing it (referred to as “conjugated” monoclonal antibodies).


Some naked monoclonal antibodies bind to cancer cells and exert their action by marking the cells to help the body’s immune system destroy them. Rituxan (rituximab) and Campath (alemtuzumab) are examples of this type of monoclonal antibody. Rituximab binds to the CD20 antigen, a protein found on B cells, and is used to treat B-cell non-Hodgkin lymphoma. Alemtuzumab binds to the CD52 antigen, another protein present on B and T cells, and is used to treat some patients with B-cell chronic lymphocytic leukemia.


Some naked monoclonal antibodies bind to functional parts of cancer cells or other cells that help cancer cells grow and act by interfering with the cancer cells’ ability to grow. Herceptin (trastuzumab), Erbitux (cetuximab), and Avastin (bevacizumab) are examples of this type of monoclonal antibody. Trastuzumab binds to the HER2/neu protein, a protein present in large numbers on tumor cells in some cancers that, when activated, helps these cells grow. Trastuzumab acts by inactivating these proteins. It is used to treat some breast cancers. Cetuximab binds to the epidermal growth factor receptor (EGFR) protein, which when present in high levels on cancer cells helps them grow. Cetuximab blocks the activation of EGFR and is used to treat some advanced colorectal cancers and some head and neck cancers. Bevacizumab binds to the vascular endothelial growth factor (VEGF), a protein that cancer cells produce to attract the new blood vessels they need for growth. Bevacizumab prevents VEGF from functioning and is used to treat some colorectal, lung, and breast cancers.


Some of these monoclonal antibodies have been used in cancer treatment for many years. At first they were used mainly after other treatments had failed, but as more studies have been done, the trend is to use them earlier in the course of cancer treatment.


Conjugated monoclonal antibodies (also called “tagged” or “loaded” monoclonal antibodies) are attached to anticancer (chemotherapy) drugs, toxins, or radioactive substances and used as vehicles to deliver these toxic agents directly to cancer cells. Radiolabeled monoclonal antibodies are attached to radioactive substances; treatment with such agents is called radioimmunotherapy. Chemolabeled monoclonal antibodies are attached to anticancer drugs, and immunotoxins are monoclonal antibodies attached to toxins. Zevalin (ibritumomab tiuxetan) and Bexxar (tositumomab) are examples of radiolabeled monoclonal antibodies. Both bind to an antigen on cancerous B lymphocytes and are used to treat some B cell non-Hodgkin lymphomas. Mylotarg (gentuzumab ozogamicin) is an example of an immunotoxin. It contains the toxin calicheamicin attached to a monoclonal antibody that binds to the CD33, a protein antigen present on most leukemia cells, and is used to treat some acute myelogenous leukemias.


Clinical trials of monoclonal antibody therapy are in progress for patients with almost every type of cancer. As more cancer-associated antigens have been identified and studied, it has been possible for researchers to make monoclonal antibodies against more types of cancer.



Side effects: Antibodies that contain murine sequences can be recognized by the human immune system as foreign, causing systemic inflammatory effects such as fever, chills, weakness, headaches, nausea, vomiting, and diarrhea. Some monoclonal antibodies also have side effects associated with the antigen that they target. For example, some monoclonal antibodies can affect the bone marrow’s ability to produce blood cells, which can result in an increased risk of bleeding or infection in some patients.



George, Andrew J. T., and Catherine E. Urch, eds. Diagnostic and Therapeutic Antibodies. Totowa: Humana, 2000. Print.


Guoning Li et al. "Monoclonal Antibody-Related Drugs for Cancer Therapy." Drug Discoveries and Therapeutics 7.5 (2013): 178–84. Print.


Lianos, Georgios D., et al. "Potential of Antibody-Drug Conjugates and Novel Therapeutics in Breast Cancer Management." OncoTargets and Therapy 7 (2014): 491–500. Print.


Melero, I., et al. “Immunostimulatory Monoclonal Antibodies for Cancer Therapy.” Nature Reviews Cancer 7 (2007): 95–106. Print.


Reichert, J. M., and V. E. Valge-Archer. “Development Trends for Monoclonal Antibody Cancer Therapeutics.” Nature Reviews Drug Discovery 6 (2007): 349–56. Print.


Wei-Xiang Qi et al. "Incidence and Risk of Severe Infections Associated with Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Cancer Patients: A Systematic Review and Meta-Analysis." BMC Medicine 12.1 (2014): 1–25. Print.


Zafir-Lavie, I., Y. Michaeli, and Y. Reiter. “Novel Antibodies as Anticancer Agents.” Oncogene 28 (2007): 3714–33. Print.

No comments:

Post a Comment

How can a 0.5 molal solution be less concentrated than a 0.5 molar solution?

The answer lies in the units being used. "Molar" refers to molarity, a unit of measurement that describes how many moles of a solu...