Friday, 6 December 2013

`(-sqrt(3), -1), (0, -2)` Find the inclination 'theta' (in radians and degrees) of the line with slope m.

Given are the coordinates `(-sqrt(3),-1),(0,-2)`


Slope (m)=`(y_2-y_1)/(x_2-x_1)`


Plug in the coordinates in the above formula to get the slope(m),


m=`(-2-(-1))/(0-(-sqrt(3)))`


m=`(-2+1)/sqrt(3)`


m=`(-1)/sqrt(3)` 


Inclination `(theta)=arctan((-1)/sqrt(3))`


`theta=-30^@`


`=>theta=360-30=330^@`


Now convert this into radians,


`360^@`  =`2pi` radians


`:.330^@=(2pi)/360*330`


= `(33pi)/18` radians


Given are the coordinates `(-sqrt(3),-1),(0,-2)`


Slope (m)=`(y_2-y_1)/(x_2-x_1)`


Plug in the coordinates in the above formula to get the slope(m),


m=`(-2-(-1))/(0-(-sqrt(3)))`


m=`(-2+1)/sqrt(3)`


m=`(-1)/sqrt(3)` 


Inclination `(theta)=arctan((-1)/sqrt(3))`


`theta=-30^@`


`=>theta=360-30=330^@`


Now convert this into radians,


`360^@`  =`2pi` radians


`:.330^@=(2pi)/360*330`


= `(33pi)/18` radians


No comments:

Post a Comment

How can a 0.5 molal solution be less concentrated than a 0.5 molar solution?

The answer lies in the units being used. "Molar" refers to molarity, a unit of measurement that describes how many moles of a solu...